DIAGNOSIS AND PREVENTION OF SURFACE IMPERFECTIONS

Claude Goguen, PE, LEED AP
National Precast Concrete Association

IMPERFECTION
a fault, blemish, or undesirable feature.
the state of being faulty or incomplete.

CONCRETE SURFACE
Concrete is a natural product, so an as-cast finish will have some imperfections.
The question is:
What is acceptable?

DEPENDS ON APPLICATION?

SURFACE ISSUES
• Cracking
• Honeycombing
• Bugholes
• Efflorescence
• Discoloration
• Delamination
• Scaling
• Pop Outs
SURFACE ISSUES

- Cracking
- Honeycombing Most common in precast.
- Bubholes
- Efflorescence
- Delamination
- Crazing
- Scaling
- Pop Outs

CRACKING

PLASTIC SHRINKAGE CRACKING

- Occurs on the surface of fresh concrete while it is still plastic
- Short cracks spaced a few inches to 10 feet apart
- Rarely extend to edges
PLASTIC SHRINKAGE CRACKING

CAUSES:
• Windy, low humidity conditions, high temperature that causes rapid surface moisture evaporation.
• Surface shrinks faster than concrete interior
• Stresses develop that exceed the concrete’s tensile strength.
• Silica Fume concrete susceptible
PLASTIC SHRINKAGE CRACKING

- Optimize aggregate gradation to minimize paste content
- Use low water to cementitious ratio
- Prevent rapid loss of surface moisture
- Use fiber reinforcing

DRYING SHRINKAGE CRACKING

- Occurs on the surface of hardened concrete
- Concrete shrinks due to drying (1/16” in 10 feet)
- Due to restraint

DRYING SHRINKAGE CRACKING

- Loss of excess water
- Increases in sand content
- Use of high shrinkage aggregates
- Improper curing

DRYING SHRINKAGE CRACKING

- Low water content
- Increase coarse aggregate content
- Optimize aggregate gradation to minimize paste
- Thorough curing
- Shrinkage reducing admixtures
OTHER TYPES OF CRACKING

- Thermal cracking
- Settlement cracking
- Freeze Thaw
- Alkali Aggregate Reactivity
- Sulfate Attack
- Corrosion of reinforcing

THERMAL CRACKING

CAUSES
- Excess temperature differential within concrete
- Using cold formwork
- Casting in cold temperatures

REMEDIES
- Use cold weather practices when needed
- Warm formwork
- Watch concrete temps when steam curing

SETTLEMENT CRACKING

DEFORMATION CAUSE BY TENSILE STRESSES OVER A RESTRAINT

Figure 2: Schematic representation of plate settlement crack formation
SETTLEMENT CRACKING

CAUSES
- Excess water content
- Excessive bleeding
- Inadequate cover

REMEDIES
- Control excessive bleeding
- Low water content
- Adequate cover over reinforcing
- Vibration

FREEZE THAW CRACKING

ALKALI AGGREGATE CRACKING

SULFATE ATTACK CRACKING

CORROSION REINFORCING CRACKING
AND CRACKS CAN ALSO BE CAUSED BY...

AND CRACKS CAN ALSO BE CAUSED BY...

HONEYCOMBING

Lack of mortar between coarse aggregates

CAUSES
• Concrete too stiff and unworkable
• Improper consolidation
• Leaky forms
• Congested reinforcing
• Improper placement of concrete

REMEDIES
• Increase fineness of aggregates
• Proper consolidation
• Fix forms
• Proper placement - training
• Use water reducer

HONEYCOMBING

Lack of mortar between coarse aggregates
Can be due to:
- Entrapped Air
- Free Water
BUGHOLES

Air can be entrapped in concrete in two ways:

- Paste can’t fill all voids between aggregates
- Entrapped during mixing and placing of concrete

Free water

- Excess not needed for hydration or absorbed by aggregates
- Not evacuated by bleeding

CAUSES

- Excessive water in concrete
- Improper/lack of vibration
- Over application or type of form release
- Improper placement of concrete
- Sand with low fines

Form Release

- 2 types:
 - Barrier
 - Reactive
 - Combination of both

PREVENTION

- Redesign mix (increase fines)
- Use SCC
- Apply form release properly
- Use a VMA
- Ensure proper vibration
- Proper concrete placement

Form Release

Less is better!!
Bugholes

SCC
- Use a VMA
- Minimize splashing

Efflorescence

Not...

Or....
EFFLORESCENCE

- A deposit of salts, usually white, formed on a surface, the substance having emerged in solution from within either concrete or masonry and subsequently been precipitated by reaction, such as carbonation, or evaporation. ACI 116R

- Conditions for Efflorescence
 - There must be soluble salts available.
 - There must be a source of water that is in contact with the salts, forming a salt solution.
 - There must be a pathway for the salt solution to migrate to the surface and evaporate.
 All three of these conditions must exist for efflorescence to occur.

EFFLORESCENCE

REMEDIES

- Mix Design
 - Low alkali cement, use SCM, low(er) w/c, well graded aggregate, use efflorescence controlling admixture

- Curing
 - Insure strength and density before subject to weathering

- Storage
 - Protect from extraneous water for as long as possible
 - Good air circulation around pieces

DISCOLORATION

Factors that affect color
- Cementitious materials
- Aggregates
- Admixtures
- Water content
- Batching
- Curing
- Finish/Surface texture
- Efflorescence

Every mix component as well as other outside influences!!

DISCOLORATION

- Variation in materials, dosing, finishing and curing are the main causes for discoloration
- Key to uniform color is consistency in the entire process….materials → delivery
DELAMINATION

CAUSES
- Premature Sealing of the Concrete Surface
- Rapid Evaporation of Bleed Water
- Placement of Concrete against cool form
- High Percentage of Entrained Air

REMEDIES
- Ensure proper air content
- Accelerator or heated concrete
- Delay finishing

SCALING

CAUSES
Improper Use of Finishing Tools
- Premature Sealing of the Concrete Surface
- Over-finishing
- Excessively Wet Concrete
- Lack of Proper Air Void System

REMEDIES
- Ensure proper air content
- Proper finishing
- Careful with deicing salts

POP OUTS

CAUSES
- Poor quality aggregates
- Improper finishing
- Rapid moisture loss at surface

REMEDIES
- Stronger concrete
- Air entraining
- Low slump concrete
- Proper finishing
SURFACE ISSUES

• Cracking
• Honeycombing
• Bugholes
• Efflorescence
• Discoloration
• Delamination
• Scaling
• Pop Outs

GENERAL BEST PRACTICES

• Consistency, consistency, consistency!
• Low water content
• Training
• Thorough QC program
• Effective root cause analysis

QUESTIONS

DIAGNOSIS AND PREVENTION OF SURFACE IMPERFECTIONS

Claude Goguen, PE, LEED AP
National Precast Concrete Association