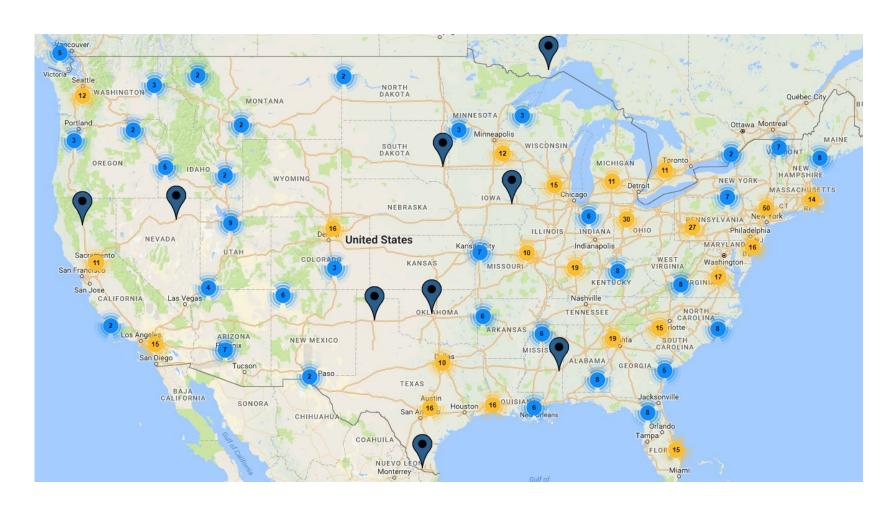
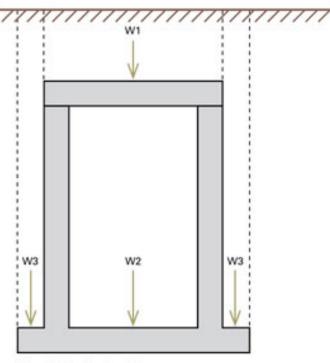
UTILITY VAULTS: THE PRECAST ADVANTAGE


OUTLINE

- Purpose of utility vaults
- Uses of utility vaults
- Materials
- Production
- Installation
- Applicable standards
- NPCA plant certification

PRECAST ADVANTAGE

- Available nationwide
- Non-combustible
- Long life span and durability
- Easily designed to withstand traffic or aircraft loading
- Produced in a controlled environment
- Delivered and set by manufacturer
- Faster installation
- Cost effective


AVAILABLE NATIONWIDE

DURABILITY

- Buoyant forces can cause underground tanks to rise.
- The weight of precast concrete tanks protects against these buoyant forces and keeps the tanks underground.

 $W_T + W_1 + W_2 + W_3 + ...$

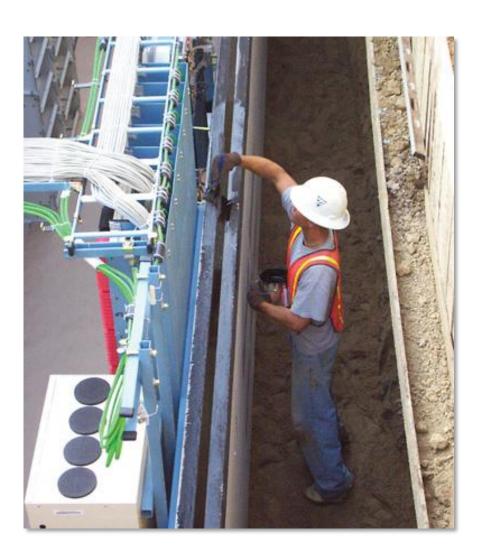
W1 = Weight of soil on lid

W2 = Weight of concrete on structure

W3 = Weight of soil on shelf

PRECAST ADVANTAGE

- Provides easy access to equipment for maintenance.
- Provides structurally sound enclosure.
- Provides a secure enclosure for costly equipment.


PRECAST ADVANTAGE

 Protects vital underground connections and controls for utility distribution.

USES FOR UTILITY VAULTS

- Communications
- Electricity
- Gas
- Steam
- Cable/Data

Cement

 Governed by ASTM C150, "Standard Specification for Portland Cement"

Aggregates

 Well-graded, sound, nonporous aggregate conforming to ASTM C33, "Standard Specification for Concrete Aggregates."

Water

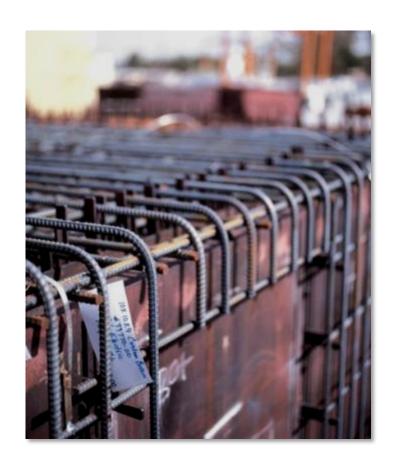
 ASTM C1602, "Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete."

Admixtures and Supplementary Cementitious Materials (SCMs)

Admixtures and SCMs allow the manufacturer to fine-tune and enhance the properties of the concrete mix.

Admixtures and Supplementary Cementitious Materials (SCMs)

Air entraining admixtures per ASTM C 260 improve freeze-thaw properties while SCMs per ASTM C595 and C618 have impacts upon the water content and can lead to significant improvements in the physical properties of the concrete.


Reinforcement

Reinforcement of concrete is required and must be provided and designed to meet structural loading and handling conditions of the structure.

Reinforcement

Reinforcement types can vary from welded-wire mesh to conventional rebar to fibers – all reinforcement must comply with applicable standards.

STRUCTURAL DESIGN

Loading Conditions

- Surface surcharge
- Concentrated wheel loads
- Lateral Loads
- Presumptive soil bearing capacity
- Buoyant forces
- Connections and penetrations
- Point loads
- Live loads
- Dead loads

STRUCTURAL DESIGN

Concrete Thickness

 Sufficient to meet minimum reinforcement cover and withstand design loading conditions.

Concrete Mix Design

- Minimum 4,000 psi 28-day concrete compressive strength
- Water/cementitious ratio < 0.45
- Quality materials using well-graded aggregates
- Air-entrained in accordance with ACI 318
- Potable water usage

Reinforcement

Reinforcement design by structural calculations.

PRODUCTION

Pre-pour Inspection

 Trained and qualified plant personnel perform inspection before each pour to verify form cleanliness, proper amount of release agent, and reinforcing steel placement and configuration.

Post-pour Inspection

 As an essential part of the production process, the post-pour inspection verifies product conformance to project specifications.

Final Inspection

Provides validation to quality of products.

INSTALLATION

Proper installation is absolutely critical for maintaining the inherent quality of plant-produced concrete utility structures, and considerations include:

- Proper connections
- Planning for site conditions
- Excavation and bedding

INSTALLATION

- Vault placement
- Proper sealing methods
- Installation of access risers and entry
- Penetrations
- Backfilling procedures

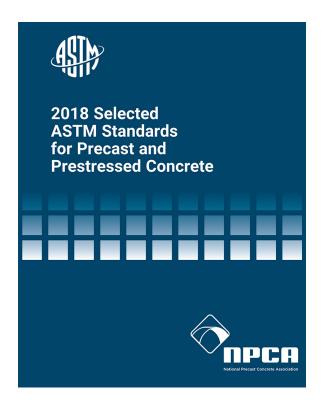
APPLICABLE STANDARDS

ASTM C 857

 Practice for Minimum Structural Design Loading for Underground Precast Concrete Utility Structures

ASTM C 858

 Specification for Underground Precast Concrete Utility Structures


ASTM C 891

 Practice for Installation of Underground Precast Concrete Utility Structures

APPLICABLE STANDARDS

ASTM C 1037

 Practice for Inspection of Underground Precast Concrete Utility Structures

APPLICABLE STANDARDS

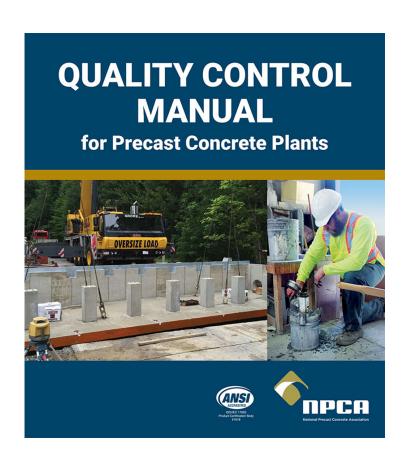
ACI 318

Building Code Requirements for Structural Concrete

AASHTO

Specification for Highway Bridges

Project-Specific Requirements


REFERENCES

NPCA Best Practices
 Manual – Precast
 Concrete Utility Vault
 Manufacturing


REFERENCES

- NPCA Quality Control Manual for Precast Plants
- Local Codes and Regulations

NPCA PLANT CERTIFICATION

- Quality Control Manual to ensure the production of quality precast products
- Plant Inspections conducted by third-party consultants
- Accredited by ANSI

