

National Precast Concrete Association

precast.org

PRECAST CONCRETE FOUNDATIONS

Foundations are used:

- To transfer the loads of structures into the bearing soils they sit upon.
- To resist uplift forces caused by wind.
- To enclose basements and crawlspaces, and to resist lateral earth and hydrostatic pressures.

Types of foundations – residential, light commercial

- Continuous footings
 - Basement
 - Crawlspace
 - Slab on ground
- Thickened slab

Materials used to build foundations

- Masonry (CMUs)
- Cast-in-place concrete
- Wood
- Precast concrete

Masonry

- Built on site, labor intensive
- High site impact (approx. 5-10 days)
- Construction impacted by weather
- Moderate permeability
- f'm = 2,500 psi

Cast-in-place concrete

- Formed and cast on site
- High site impact (5-8 days)
- Construction impacted by weather
- Low Permeability
- Monolithically cast = cracks
- f'c = 3,500 psi

Wood

- Can be built on site or off site
- Moderate site impact (3-4 days)
- High permeability
- f'c = 7,000 psi, buckling is a concern

Precast concrete

- Built off site
- Lowest site impact (0.5-1.0 days)
- Negligible impact by weather
- Panelized = joints for expansion and contraction
- Low permeability
- f'c = 5,000 psi

Many precast concrete foundation systems employ thin-wall/thinshell designs.

Foundations fall under the International Residential Code (IRC)

- Precast concrete foundations entered the IRC in 2003, Chapter 4.
- However, they are not well defined; the IRC lacks direction and details for building officials.

IRC development

 NPCA has submitted code changes to better define the use of precast concrete foundations (IRC 2007 supplementary code cycle).

Precast concrete foundations are preengineered systems manufactured in a controlled environment; therefore code submissions are performancebased.

Masonry, cast-in-place and wood are field-built systems whose design must be specified in the code in order for building officials to inspect them; these are prescriptive-based.

Proposed minimum material requirements:

- f'c = 5,000 psi @ 28days.
- Rebar must meet ASTM 615, A706, A996 with a minimum cover of 5/8".
- Panel-to-panel connections shall be Grade II, if bolted.
- Fibers must conform to ASTM C 1116.
- Grout must conform to ASTM C 1107.

Design:

- System design by a P.E.
- Components of the system do not require a PE stamp every time they are used.
- Manufacturers must have third-party inspection and QA program.

Proposed minimum design criteria:

- Total uniform load applied = 5,300 lbs/ft (this correlates with new footing table @ 3story height).
- Lateral earth pressure = $60 \text{ lbs/ft}^2/\text{ft}$.
- Accommodate concentrated loads in excess of the uniform loads.

Since precast concrete foundations are preengineered, such as a truss or joist, their capacities or limits must be communicated to the purchaser.

Information that must be conveyed to the purchaser:

- Soil bearing capacity (psf).
- Footing design and material.
- Max. allowable uniform load (lbs/ft).
- Concentrated loads and their points of application.

DESIGN

Suggested procedure to design with a precast concrete foundation

- Calculate all live and dead loads from floors, roofs and walls.
- Calculate applicable snow, wind and seismic loads.
- Calculate and determine locations of concentrated loads, such as from floor beams or girders.

DESIGN

Suggested procedure to design with a precast concrete foundation

- Determine soil type and bearing capacity.
- Check to ensure that a precast concrete foundation system can safely support all calculated loads – work with manufacturer.
- Design footing, IRC chapter 4.
- Check for uplift.

INSTALLATION

- Footings should be installed on undisturbed soil.
- Panels are set into place on leveled, compacted crushed stone or cast-in-place continuous footing.
- Joints are sealed in accordance with manufacturers instructions, commonly during panel-to-panel installation.
- Backfill may not commence until walls are braced at top and bottom.

INSTALLATION

Windows and doors are easily included to meet ingress and egress requirements.

- Are cast off site in a controlled environment with stringent quality control.
- Are stronger and lighter than most competing materials.

- Minimize construction period.
 - Installed quicker
 - Less weather dependency
 - Reduced coordination of trades
- Are leak resistant and have little to no cracking.

- Can have a variety of architectural finishes.
- Are environmentally friendly and can qualify for LEED credits.

- Reduce the overall costs for builders and homeowners.
- Are the best material choice for residential and light commercial foundations.

