

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Overview

- Purpose of Reinforcement
- Types and Identification
- Positioning and Spacing
- Cage Fabrication
- Do's and Don'ts
- QC Certification Program Requirements

Reinforcing Steel Bars (Rebar)

- Hot rolled carbon-steel bars
- Plain or Deformed (surface lugs)
 Deformed bars provide better bonding
- Cylindrical (square bars are mostly obsolete)
- Bar number in US units (up to #8):
 - Ex.: #3 means 3/8" diameter bar

surface area =
$$\left(\frac{\pi}{4}\right)\left(\frac{3}{8}\right)^2 = 0.11$$
 in²

• Available in #3 to #11, also #14 and #18

Photo: istockphoto

Bar Mats and Welded Wire Reinforcement (WWR)

- Mesh consist of Smooth (W) or Deformed (D) wires
- Welded Wire Reinforcement (WWR) produced according to ASTM A1064 (plain and deformed)
- ASTM A884 for epoxy-coated
- ASTM A184 for bar mats
- · Can be purchased in rolls or sheets
- Desirable when regular reinforcement patterns are needed
- Reduces time for building reinforcement mesh

Welded Wire Reinforcement (WWR)

- Tips for using WWR
 - Larger quantities most cost-effective
 - Combine designs as much as possible
 - Cost killers:
 - Small orders
 - · Pre-bent sheets
 - · Variabilities in sheets

25

GFRP Reinforcing

- ACI Code 440.11-22 Design
- ACU Spec 440.5 -Construction
- Applications
 - Concrete exposed to deicing chemicals
 - Marine environments
 - Conductive environments
 - · High voltage conduits
 - · MRI rooms in hospitals
 - Lightweight

Fiber Reinforcement

- ASTM A820, C1116
- Most Significant Properties
 - Geometry (anchorage)
 - Aspect ratio
 - Material type
 - Tensile strength
 - Elastic modulus
- Typical uses
 - Crack control
 - Impact resistance
 - Some steel replacement

Positioning & Spacing: Concrete Cover

- Reinforcement must be placed close to concrete surface to arrest the cracks and to increase strength of the concrete member
- **However**, a minimum cover is needed to ensure bond between concrete and steel and to protect steel against corrosion

NPCA

- Concrete Cover
 - Chairs and stand-offs, sufficiently and properly spaced
 - · Bar chairs
 - · Support wheels
 - Slab bolsters
 - Max. spacing 48"
 - Maintain consistent cover throughout length of bar
 - Bar should not flex between supports
 - Cage should not move or shift

Cage Fabrication

- Spacing
 - Minimum: 0" -or- 1.33 * max. aggregate size
 - Maximum: Per design code; generally 18"
 - Bundling OK but requires addtl. design considerations

	Bar Sizo	Diameter (in)	A (in2)
Bar Size vs. Steel Area	Dai Size	Diameter (III)	A _s (iii)
 Bar number (#3 thru #8) Diameter in 8ths of an inch Example: #4 rebar = 4/8 inches dia. = ½" dia. (ø0.5") A_s = Area of Steel 	3	.375	.11
	4	.500	.20
	5	.625	.31
	6	.750	.44
Cross-sectional area (end area)	7	.875	.60
 Area of steel computations are typically specified <u>per</u> <u>lineal foot</u>. 	8	1.00	.79
	9	1.128	1.00
	10	1.270	1.27
	11	1.410	1.56

Reinforcement Bends

For WWR:

- 4x wire diameter (d_b) for deformed wires larger than D6
- 2x wire diameter (d_b) for all other wires
- Bends with inside diameter less than $8d_b$ must not be less than $4d_b$ from nearest welded intersection

Cage Fabrication

- Set Up Freehand
 - Tried and true
 - · More time required
 - Relies *heavily* on skilled labor force
 - Vitally important for *all* of the crew to know the "why's" of proper steel placement

<section-header><section-header><section-header><text><text><list-item><list-item><list-item><list-item>

<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item>

Overview

- Purpose of Reinforcement
- Types and Identification
- Positioning and Spacing
- Cage Fabrication
- Do's and Don'ts
- QC Certification Program Requirements

Concrete Cover

- No chairs used
- There is no concrete cover to the inside core

 Reinforcing congestion causing concrete blockage during pouring

PRECAST

67

Do's and Don'ts

69

Do's and Don'ts

QC Certification Program Requirements

- Fabrication of Reinforcement
- Pre-Pour Operations
- Verification of Reinforcing Steel Conformance with Design

72

PRECAS

QC Certification Program Requirements

- 1.1.2 Plant-specific Quality Control Manual
 - 6.) Product pre-pour, casting, post-pour and final inspection procedures
 - 9.) Product repair policy and procedures
- 2.2.5 Reinforcement Plant Requirements
 - 2.) Cross check heat numbers on tag bundles match documents on-file
- 4.1.7 Production Practices Plant Requirements
 - 3.) Documented reinforcing checks on one (1) cage or 3% of each production run daily
 - 6.) Maintain records for three (3) years (also referenced in 5.1.1)

QC Certification Program Requirements

- 4.2.1 Fabrication of Reinforcement (*critical section*)
 - · Detailed reinforcing steel plan document
 - · Tolerances shown on plans or in plant-specific QC manual
 - · Bent per CRSI and RSIC/IAAC standards
 - · Rigid by tying or clipping
 - Epoxy coatings repaired
- 4.2.5 Fabrication Plant requirements
 - Tolerances, welding procedure meeting AWS D1.4/D1.4M

Reinforcing Assembly Best Practices

Hugh Martin, P.E. Director of Technical Resources National Precast Concrete Association

> hmartin@precast.org (317) 571-9500 https://precast.org/

PRECAST