

What Are Some of Your Challenges?

When is the best time to have a problem?

- At the plant before batching?
- At the plant after batching?
- At the bed before casting?
- At the bed after casting?
- Before you ship?
- After you ship to customer?
- When you get a call from a lawyer?

Troubleshooting, Problem Solving & Process Improvement

Troubleshooting

- · Designed for "Somebody is mad at me" situations
- Time is of the essence
- · Problems that can be solved in a few minutes, hours, or before the next batch

Problem Solving

- Used for more complex problems
- Typically require data analysis and team approach
- May involve processes, products, services or more

Process Improvement

- Ongoing activity
- Typically involves small changes in order to improve output or performance
- Recognized Programs:
 - Total Quality Management (TQM)
 - Six Sigma

Problem Solving vs. Process Improvement

Problem Solving

- Identify and quantify the problem
- Assign project team
- Gather and analyze data, and establish measures
- Diagnose cause(s) and ascertain whether cause is sporadic (special) or endemic (common)
- Address cause(s)
- · Develop action plan
- · Implement plan and prevent recurrence
- Start another problem-solving project

Process Improvement

- · Identify and quantify the opportunity
- · Define the process and the scope of the project
- · Analyze the current process
- Think about future process(s)
- Generate and assess alternatives and recommend changes
- · Try out and verify effectiveness of changes
- · Implement changes, standardize
- · Hold the gains!

Several Considerations

Materials

OPC SCM Aggregates Fibers Admixtures Water

Equipment

Material Haulers Yard Equipment Batch Plants Mixers Jobsite Equipment

Processes

Material Handling Material Sequence Batching Transporting Placing Finishing Curing

People

Managers Equip. Operators Batch Operators Drivers Production Finishers Testing Labs Engineers Owners

PRECAST

Multiple-Legged 5 Whys Use this path for the specific nonconformance Define Problem being investigated Why? Root Causes Why did we have the problem? Product Why? Use this path to investigate why the Why? Why did the problem reach the customer? oblem was not detected Process Whv? Use this path to investigate the Why? ₩hy did our system allow it to occur? stemic root cause System Why? Why? С Whv? PRECAST

The End Game - Process Control

In Summary:

- A systematic approach to solving problems
- · Identify and Define the real issue
- · Use the tools to determine cause and effect
- · Develop a plan for measurable improvements
- · Make adjustments one at a time
- · Sometimes experimentation is in order
 - Alternate Materials
 - Alternate Equipment
 - Alternate Process
 - Alternate People

26

PRECAST

NPCA

<section-header><list-item><list-item><list-item><list-item><list-item>

31

Bleeding Gatorade

The green bleed water 319-0311-1 absorbs in the Ultra violet light at 273 and 371 nm, with the absorption at 371 giving rise to a yellow color. The measured fluorescence, represents the absorption of light (excitation) at one wavelength and emission at a different wavelength. There are two excitation bands, at 299 and 313 nm – neither of which are observed in the absorbance spectrum. Likely it is too small to be observed with the UV-vis instrumentation. If the sample is exposed to light at either 299 or 313 (both of which are present in natural day light – but are out of visible range so cannot be seen) the sample emits light at 447, in the blue range. The combination of absorbing and emitting gives the distinctive fluorescent green/yellow color.

					Blaine Fineness	
Туре	C₃S	C ₂ S	C ₃ A	C₄AF	m²/kg	
l	57.5	12.7	9.3	7.3	397.2	
Normal	49-62	9-16	7-11	4-11	375-440	
	59.1	12.7	6.4	10.3	392.7	
Ifate Resistance	51-68	7-20	0-8	7-13	305-471	
III	58.0	13.5	7.3	9.1	560.8	
High-Early	49-66	7-20	4-14	4-12	365-723	
IV	42.2	31.7	3.7	15.1	339.5	
Low Heat	37-49	27-36	3-4	11-18	319-362	
V High sulfate Resistance	59.2 52-63	14.6 8-22	4.1 2-5	11.7 9-15	401.1 302-551	
White	62.7	17.8	10.4	1.0	482.4	
	50.5-72.4	9.3-25.2	5.2-12.6	0.7-1.8	384-564	

MILL TEST R Laboratory:	ESULTS	2	Date: June 2022 Cement Type: I Portland			
CHEMICAL DATA			PHYSICAL DATA			
ITEM	LIMIT	RESULT	ITEM	LIMIT	RESULT	
Silicon Dioxide (SiO2) %	***	20.38	% Air Content		7.10	
Aluminum Oxide (Al ₂ O ₃) %	***	5.75	Blaine (cm ² /g)	>=2800	3880	
Ferric Oxide (Fe2O3) %	***	2.05	% Pass 325 Mesh	***	93.60	
Calcium Oxide (CaO) %		63.38	14 day C1038 Expansion %*	<=0.020%	0.001	
Magnesium Oxide (MgO) %	<=6.0	3.58	% Autoclave Expansion	<=0.80	0.35	
Sulfur Trioxide (SO3) %	<=3.5*	3.56				
Loss on Ignition (LOI) %	<=3.0	1.71	Compressive Strength			
Sodium Oxide (Na2O) %	***	0.13	1 day	***	2955	
Potassium Oxide (K2O) %	***	1.12	3 day	***	3870	
Total Alkali %	***	0.87	7 day	***	4615	
Insoluble Residue %	<=0.75	0.40	28 day	***	5750	
Limestone	<=5.0					
L Color		63.78				
Potential Compounds			Time of set			
C ₃ S	***	51.0	Vicat			
C ₂ S		20.0	Initial(minute)	45>X<375	97	
C ₃ A	***	12.0				
C ₄ AF		6.0	PFS		77.00	

40

SHOW

Mill Cert. Control Sheet

- Alkali content
- Blaine fineness
- C_3S higher %, higher early strength
- C₂S higher %, higher long-term strength
- C₃A lower %, higher sulfate resistance

CHEMICAL	DATA	
ITEM	LIMIT	RESULT
Silicon Dioxide (SiO2) %		20.38
Aluminum Oxide (Al ₂ O ₃) %		5.75
Ferric Oxide (Fe ₂ O ₃) %		2.05
Calcium Oxide (CaO) %	***	63.38
Magnesium Oxide (MgO) %	<=6,0	3.58
Sulfur Trioxide (SO3) %	<=3.5*	3.56
Loss on Ignition (LOI) %	<=3.0	1.71
Sodium Oxide (Na2O) %	***	0.13
Potassium Oxide (K2O) %	***	1.12
Total Alkali %	***	0.87
Insoluble Residue %	<=0.75	0.40
Limestone	<=5.0	
L Color		63.78
Potential Compounds		
C ₃ S	***	51.0
C2S	***	20.0
C ₃ A	***	12.0
C ₄ AF	***	6.0

PRECAST

MILL TEST RESULTS

NPCA

Grada	tion –	ASTM	C-136	
	Sieve Size	<u>Metric Size</u>	International	
	1-1/2"	38 mm	37.5 mm	
	1"	25 mm		
Nominal Agg.	3/4"	20 mm	19 mm	
size	1/2"	12.5 mm		
	3/8"	10 mm	9.5 mm	
	#4	4.75 mm	4.75 mm	
Number of	#8	2.50 mm	2.36 mm	
openings per In.	#16	1.12 mm	1.18 mm	
in. (e.g. # 100	#30	0.6 mm	0.6 mm	
has 100x100)	#50	0.3 mm	0.3 mm	
	#100	0.15 mm	0.15 mm	Aggregate Screen Shakers
	#200	0.075 mm	0.075 mm	
	Not used in	FM Calculation		
				PRECAST

NPCA

TABLE 1: Fresh Properties							
	FLY	ASH	-		NATURAL POZZOLANS		
and the second sec	Class F	Class C	Slag	Silica Furno	Shale	Clay	Metakaolin
Water Demand	44	- 44	4	11	\leftrightarrow	\leftrightarrow	Ť
Workability	Ť	Ť	Ť	5	Ť	Ť	4
Bleeding	4	4	\$	++	\leftrightarrow	⇔	4
Setting Time	Ť	1	Ť	↔	Ť	Ť	↔
Air Entrainment Dosage	11	Ť	↔	11	↔	↔	Ť
Heat of Hydration	4	\$	4	↔	4	4	4
TABLE 2. Ha	arueneu	Propert	les				
The second second	Class F	Class C	Slag	Silica Fume	NAT Shale	URAL POZZO Clay	Metakaolin
Early Age Strength Gain	Class F	ASH Class C ++	Slag \$	Silica Fume	NAT Shale	Clay	Metakaolin
Early Age Strength Gain Long-Term Strength Gain	Class F	ASH Class C ↔	Sløg \$ †	Silica Fume 11 11	NAT Shale J	URAL POZZC Clay J	DLANS Metakaolin 11 11
Early Age Strength Gain Long-Term Strength Gain Permeability	Class F JJ T	ASH Class C ↔	Sløg ‡ †	Silica Fume 11 11 11 11 11	NAT Shale J T	URAL POZZC Clay U T	Metakaolim
Early Age Strength Gain Long-Term Strength Gain Permeability Chloride Ingress	Class F Ul- T U- U-	ASH Class C ↔ ↑	Sløg \$ †	Silica Pume 111 111 111 111 111 111	NAT Shale J T J	URAL POZZC Clay ↓ ↓ ↓	Metakaolim TT TT JJ JJ
Early Age Strength Gain Long-Tem Strength Gain Permeability Chloride Ingress ASR	FLY Class F Ul- T U- U- U- U- U-	ASH Class C ↔ ↑ ↓ ↓	Slag	Silica Punne TT TT UU UU UU	NAT Shale 1 1 1 1	URAL POZZC Clay ↓ ↓ ↓ ↓	Metakaolin 11 11 11 11 11 11 11 11
Early Age Strength Gain Long-Term Strength Gain Permeability Chloride Ingress ASR Sulfate Resistance	Class F LU T LU LU LU LU LU LU LU LU LU LU	ASH Class C ↔ ↑ ↓ ↓ ↓ ↓	Slag 1 1 4 4 43 11 11 11 11 11 11 11 11 11 1	Silica Pume 111 111 111 111 111 111 111 1	NAT Shale T J J J	URAL POZZC Clay ↓ ↓ ↓ ↓	Metakaolin Metakaolin Mt JL JL JL LL LL LL LL

NPCA

Moisture Control					12	ix.	0.0700		
tch size	Management and a 1		1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Veigh				
01 - 0.50	33.05	Water content 1	Measured value 2	Water content 2	× <		1		
51 - 0.60	0.00	0.00	49.44	152.77	D		/		
61 - 0.70	0.00	0.00	0.00	0.00	8		1		
71 - 0.80	0.00	0.00	0.00	0.00	t, %		1		
81 - 0.90	0.00	0.00	0.00	0.00	ten		1		
91 - 1.00	34.77	95.00	60.88	280.00	U0 6		1		
01 - 1.10	35.50	103.33	61.96	307.08	O a	/			
11 - 1.20	36.23	111.67	63.04	334.17	ture	/			
.21 - 1.30	36.97	120.00	64.12	361.25	SIO 4	/			
.31 - 1.40	38.10	142.50	65.74	402.00	M	1			
.41 - 1.50	39.18	165.00	67.36	442.50	ota	1			
.51 - 1.60	39.91	176.00	68.44	469.70	F 2	1			
.61 - 1.70	40.65	187.00	69.52	496.83		•/			
.71 - 1.80	41.38	198.00	70.60	524.00	0	<u> </u>			
.81 - 1.90	42.48	214.00	72.22	565.00	0	5	10 15	20	2
.91 - 2.00	43.58	230.00	73.84	605.00		Pro	be Value r	nV	

Some Suggestions

Bucket

- Concrete must meet spec before dumping
- Do not drive over bumps, rough roads
- Keep gate, seals, and controls clean and functioning well

- Concrete must meet spec before dumping
- Develop SOPs for drivers
- Have inspection schedule and proactive maintenance plan

RMX Truck

Develop SOPs for drivers

•

- Rotation speed for transit (3-6 RPM)
- If additions are made required rotations and speed
- Determine condition assessment for each truck, and adjust SOP accordingly
- Have inspection schedule and proactive maintenance plan

121

Placing Concrete - Guidelines

- Keep drop height minimized
- Pour from one side of the form and let the concrete flow
- Place concrete on top of concrete
- Create a flowing front
- If raking is needed, do not rake over the top

<section-header><section-header>

NPCA

