Learning Objectives

• Explain the difference between precast concrete and ready-mix/cast-in-place concrete.
• Describe benefits of precast concrete over other construction materials.
• Define common precast terms and their significance, including water-to-cement ratio, among others.
• List the raw materials and types of reinforcement used in concrete production.
Learning Objectives Continued

- Describe common types of concrete used in precast and their applications.
- Outline the processes and equipment involved in precast concrete manufacturing, including raw material selection, mixing, curing, handling, and beyond.
- Discuss the role of QA and QC in precast operations and list common fresh and hardened concrete tests and their purposes.

Overview

1. What is precast concrete?
2. Concrete raw materials
3. Types of concrete used in precast
4. Precast production process and plant equipment
5. Curing concrete
6. Concrete design, strength, and reinforcement
7. Prestressing
8. QA/QC and concrete testing
9. Plant safety
History

- **Pyramids**
 - ~2600 BC onward
 - Egypt and Sudan

- **Aqueducts**
 - 312 BC onward
 - Italy

History

- **Pantheon**
 - 125 AD
 - Italy
What is precast concrete?

- Precast concrete: concrete cast elsewhere than its final location and cured in a controlled environment

Precast Concrete Production Plant
Precast Concrete Jobsites

Precast Concrete Jobsites
Ready-Mix / Cast-in-Place Concrete Plant

Ready-Mix / Cast-in-Place Jobsite
Ready-Mix / Cast-in-Place Jobsite

Precast Concrete Industry

- 670+ NPCA precast producer members
 - Note: This does NOT account for every precast production plant! Not even close.
- Concrete is the second-most used material in the world
- ~30 billion tons of concrete are used each year

https://heatmap.news/economy/the-planet-s-jaw-dropping-astonishing-downright-shocking-amount-of-concrete#:~:text=The%20world%20produces%20somewhere%20around,produced%20each%20year%20%5B4%5D.
What is precast concrete?

• Concrete cast **elsewhere** than its final location and cured in a **controlled** environment
• **Composite material** made of natural ingredients, manufactured materials, and industrial byproducts
• Displays highest strength in **compression**
• Service life can be **100+ years**
• Infrastructure, residential, commercial, industrial, architectural applications, and **beyond**

Why precast concrete?

• Strength
• Durability
• Optimization
• Long service life
• Economy
• Ease of installation
• Modularity
• Accelerated schedules
• Safety
• Versatility, flexibility, and innovation
• Precise manufacturing
• Local availability
• Reliable supply chain
• Resilience
• Sustainability
• Resilience
Concrete Raw Materials

- Cement
- Water
- Supplementary cementitious materials (SCMs)
- Admixtures
- Coarse aggregate
- Fine aggregate
Concrete Raw Materials

- **Paste (binder):**
 - Cement
 - Water
 - Supplementary cementitious materials (SCMs)
 - Admixtures

- **Aggregates ("filler"):**
 - Coarse aggregates
 - Fine aggregates

Cement

- Cement is a dry powder that chemically reacts with water, hardens, and adheres to other materials to bind them together
 - Also called portland cement or hydraulic cement
 - “Hydraulic” means it reacts readily with water
Portland Cement Origins

• Joseph Aspdin
• 1778-1855
• 1824 patent: “an improvement in the mode of producing an artificial stone”

Portland Cement Primary Ingredients

- Limestone
- Clay
- Silica

• The proportions of each of these materials in the cement determines how the cement will perform
Portland Cement Production

Kiln

- Ground limestone + clay
- 1,400°C
- Hot air
- Clinker

Clinker

Portland Cement Production

- Clinker
- Gypsum
Cement Types

- The proportions of each of the raw materials in the cement, and how the cement is ground, determines how the cement will perform.
- Type I: For general use
- Type II: For general use or when moderate sulfate resistance is desired
- Type III: For use when high early-age strength is desired
- Type IV: For use when a low heat of hydration is desired (not readily available today)
- Type V: For use when high sulfate resistance is desired
- Type IIL: Can be used as Type I or Type II in most applications
- Blended cements

Graph from Portland Cement Association’s (PCA) “Design and Control of Concrete Mixtures”
Mixing Water

- Water must be potable/drinkable
- Well water or city water is acceptable
- Well water must conform to ASTM C1602

What about washout water?
Cement and Water

Cement Hydration

- Water
- Cement
- Hydration Products
2 Main Products of Cement Hydration

Calcium Silicate Hydrate (CSH)
- Primary cementitious binder.
- Greatest contributor to strength.
- The main “glue” in concrete.

Calcium Hydroxide (CH)
- Little to no cementitious properties.
- Contributes little to strength.
- Helps maintain high pH of concrete.

Cement and Water

- WATER
- CEMENT
- CONCRETE
Cement and Water

- Water-to-cement ratio (w/c) = weight of water / weight of cement in a batch of concrete
- Water-to-cementitious materials ratio (w/c_m) = weight of water / weight of all cementitious materials in a batch of concrete
- Varies depending on the type of concrete and the application
- In the right quantities, water and cement will create a very strong, durable, and impermeable paste
- Water demand varies day-to-day

w/c or w/c_m should be 0.50 or lower
Water-to-Cement Ratio Examples

- Water-to-cement ratio (w/c) = weight of water / weight of cement in a batch of concrete
 - 336 lbs water / 700 lbs cement = 0.48
- Water-to-cementitious materials ratio (w/c_m) = weight of water / weight of all cementitious materials in a batch of concrete
 - 336 lbs water / (60 lbs fly ash + 640 lbs cement) = 0.48

Water-to-Cement Ratios

- Concrete’s water-to-cement ratio (w/c) has a significant impact on concrete’s strength and durability.
- Generally:
 - A higher w/c -> lower strength and reduced durability
 - A lower w/c -> higher strength and increased durability

Graph from Portland Cement Association's (PCA) "Design and Control of Concrete Mixtures"
What Happens When More Water is Added

- Water-to-cement ratio (w/c) = weight of water / weight of cement in a batch of concrete
 - 336 lbs water / 700 lbs cement = 0.48
- Add two extra gallons of water (8.43 lbs of water per gallon = 16.86 lbs water)
 - 353 lbs water / 700 lbs cement = 0.504

Supplementary Cementitious Materials (SCMs)

- Supplementary cementitious materials (SCMs) are used in conjunction with – and as a partial replacement for – portland cement
 - Pozzolanic vs. hydraulic
 - Can be pre-blended with hydraulic cement

- Common types:
 - Fly ash
 - Slag cement
 - Silica fume
 - Metakaolin
Supplementary Cementitious Materials

<table>
<thead>
<tr>
<th>Pros (+)</th>
<th>Cons (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased long-term strength</td>
<td>Slower early-age strength gain (this can be beneficial in some cases, though!)</td>
</tr>
<tr>
<td>Increased density</td>
<td>Increased water demand</td>
</tr>
<tr>
<td>Decreased permeability</td>
<td>Tougher finishing/stickier</td>
</tr>
<tr>
<td>Improved durability</td>
<td>Material properties can vary more than cement</td>
</tr>
<tr>
<td>Many are industrial byproducts ("green" material)</td>
<td>Availability can be inconsistent</td>
</tr>
</tbody>
</table>

Chemical Admixtures

- Most every concrete mix today uses some type of admixture
- Liquid or powder
- Dosed in ounces or pounds

- Common types/uses:
 - Air-entrainers
 - Water-reducers
 - Plasticizers
 - Accelerators
 - Retarders
 - Permeability reducers
 - Corrosion inhibitors
 - Coloring
 - Permeability-reducers
 - Antimicrobials
Chemical Admixtures

- Main reasons for using admixtures:
 - Achieve certain properties in concrete more effectively than by other means
 - Maintain the quality of concrete during the stages of mixing, transporting, placing, finishing, and curing (especially in adverse weather conditions or intricate placements)
 - Overcome certain emergencies during concreting operations
 - Economy

- An admixture’s effectiveness depends upon:
 - Admixture composition, addition rate, time of addition
 - Type, brand, and amount of cementitious materials
 - Water content
 - Aggregate shape, gradation, and proportions
 - Mixing time
 - Slump
 - Temperature of the concrete

Chemical Admixtures

- No admixture is a substitute for good concreting practices
- No admixture will completely fix or recover poor concreting practices
- Always consult with the admixture supplier regarding use, dosage, admixture compatibility with other ingredients in the concrete, etc.
Normal Weight Aggregates

- Normal weight aggregate densities range from 75 lb/ft3 to 110 lb/ft3
- Used for most concrete applications

Light Weight Aggregates

- Light weight aggregate densities range from 35 lb/ft3 to 70 lb/ft3, but can be as low as 15 lbs/ft3
- Used for wall panels, architectural components, and other concrete where reduced weight is important, as well as for internal curing
Light Weight Aggregate Concrete

Heavy Weight Aggregates

- Heavy weight aggregate densities are typically greater than 130 lbs/ft\(^3\)
- Used for bollards and other security applications, counterweights, etc.

GEOTHITE MAGNETITE
Aggregates

- Together, coarse aggregate and fine aggregate make up about:
 - 60% - 75% of the concrete volume
 - 70% - 85% of the concrete mass

- Clean
- Hard
- Strong
- Durable
- Free of impurities

Aggregate Gradation

- Fine aggregates: less than 5 mm (0.2 in.)
- Coarse aggregates: greater than 5 mm (0.2 in.)
Aggregate Size and Gradation

- Use the **largest** maximum size aggregate possible AND use **well-graded** aggregate

![Diagram showing single-sized, poorly-graded, and well-graded aggregates](image)

Figures from Portland Cement Association's (PCA) "Design and Control of Concrete Mixtures"

Maximum Aggregate Size

- Maximum aggregate size depends on the size and shape of the concrete element and the reinforcing steel:
 - 1/5 of the narrowest dimension of a vertical concrete member: $D_{\text{max}} = \frac{1}{5}B$
 - 3/4 of the clear spacing between reinforcing bars and 3/4 of the clear spacing between reinforcing bars and the forms/molds: $D_{\text{max}} = \frac{3}{4}S$ and $D_{\text{max}} = \frac{3}{4}C$
 - 1/3 of the depth of slabs: $D_{\text{max}} = \frac{1}{3}T$
Aggregator Moisture Conditions

Oven Dry and Air Dry: Aggregates are dryer than SSD, so they will absorb water from the concrete mix. Increase the mix design’s water weight by the calculated amount.

Damp/Wet: Aggregates are wetter than SSD, so they will contribute water to the concrete mix. Reduce the mix design’s water weight by the calculated amount.

Saturated Surface Dry: Aggregates that are SSD do not contribute water to the concrete mix, nor do they absorb water from the concrete mix. No moisture adjustment needed.

Figures from Portland Cement Association’s (PCA) “Design and Control of Concrete Mixtures”

Types of Concrete Used in Precast

1. Wet-cast concrete (conventional concrete)
2. Dry-cast concrete (also called zero-slump or no-slump concrete)
3. Self-consolidating concrete (SCC)
4. High-performance concrete (HPC)
5. Ultra high-performance concrete (UHPC)
Wet-Cast Concrete ("Conventional")

Wet-Cast Concrete ("Conventional")
Dry-Cast Concrete (Zero-Slump, No-Slump)
Self-Consolidating Concrete (SCC)

Uses LESS water than conventional wet cast concrete!
High-Performance Concrete (HPC) and Ultra High-Performance Concrete (UHPC)
Precast Production Process & Types of Plants
The Precast Show

The Yard

Aggregate Storage
Avoiding Aggregate Cross-Contamination

Aggregate Hoppers & Cementitious Material Silos
Aggregate and Cementitious Material Conveyance

Reinforcement Storage
Some plants specialize in making one type of product, while others may have a hundred unique forms.
Mixers, Forms, and Concrete Buckets

Concrete Mixers
Forms / Molds

Forms / Molds
Knockouts and Blockouts

Cutting Cores
Bench / Invert

Reinforcement Fabrication
Chemical Admixture Equipment

QC Area
Batching Controls

- Depositing and distributing freshly mixed concrete in the location where it will cure and harden
 - Deposit concrete as close to final location as possible
 - Minimize free-fall heights to less than 6 ft
 - Handle fresh concrete as little as possible

Concrete Placing

- Depositing and distributing freshly mixed concrete in the location where it will cure and harden
 - Deposit concrete as close to final location as possible
 - Minimize free-fall heights to less than 6 ft
 - Handle fresh concrete as little as possible
Concrete Finishing

• Leveling, smoothing, consolidating, and otherwise treating fresh concrete surfaces to produce a desired appearance and surface service

• Order of operations:
 • Place the concrete
 • Consolidate
 • Screed/strike off
 • Float
 • Final finish (trowel, broom, etc.)

Concrete Consolidation

[Diagram showing the area of influence and radius of influence for a vibrating tool]
Importance of Concrete Consolidation

• Helps draw entrapped air to the unformed surface and out of the concrete, reducing pores and voids while increasing density
 • Bugholes are a sign of too little consolidation
 • Segregation is a sign of much consolidation

Curing Concrete

• Providing adequate ambient conditions to allow the concrete to achieve the desired properties for its intended use
• Everything up to this point could be lost if curing is not done properly.

Time

Temperature

Moisture
Cold Weather Curing

- Use heated mix water (180° F or lower)
- Cover curing products and apply a heater under the tarp
- Keep aggregates indoors
- Mix design adjustments
Hot Weather Curing

- Add ice to mix water
- Cover curing products with light colored sheeting
- Mist aggregate stockpiles
- Keep aggregates indoors or out of direct sunlight
- Mix design adjustments
- Keep forms and rebar indoors prior to use

Accelerated Curing
Standards, Codes, & Specifications

- Standard: Requirements for manufacturing, testing, or installing a particular product

- Code: Detailed rules outlining what to do
 - ACI 318, “Building Code Requirements for Structural Concrete”

- Specification: Outlines the requirements, codes, and standards for a particular job
 - Indiana DOT Specification for Pavement

Concrete Strength
Concrete Strength

- Example: A 4-inch by 8-inch concrete cylinder
- Stress = load per unit area
 - Load applied to the cylinder = 55,000 lbs
 - Cross-sectional area of the cylinder = 12.57 in.\(^2\)
- Stress = \(\frac{55,000 \text{ lbs}}{12.57 \text{ in.}^2} = 4,375 \text{ psi}\)

\[\text{Load} = 55,000 \text{ lbs} \]
\[A = 12.57 \text{ in.}^2 \]

Loads and Forces

- Structure’s self-weight
- Thermal stresses
- Shrinkage
- Buoyant forces
- Hydrostatic loads
- Soil loads
- Wheel loads
- Wind, snow, rain, seismic
- Handling loads
Reinforcement

- Concrete is strong in compression but weak in tension
- Concrete is brittle; steel is ductile
- Reinforcement supplies strength to withstand tensile, shear, and flexural forces

Rebar Markings

Grade Line
Main Ribs
Latter or Symbol for Producing Mill
Bar Size #11
Type Steel*
Grade Mark

* Steel Types
S—for Carbon-Steel (A615)
A—for Acid Steel (A996)
W—for Low-Alloy Steel (A706)
SS—for Stainless Steel (A655)
CS—for Low-Carbon Chromium (A1035)

*Bars marked with S and W meet both A615 and A706

Grade 60 shown
Grade 40 — No grade markings
Grade 60 — 60
Grade 75 — 75
Grade 80 — 80
Grade 100 — 100
Grade 120 — 120
Rebar Size Chart

<table>
<thead>
<tr>
<th>Bar Size Designation</th>
<th>Area Square Inches</th>
<th>Weight lb Per Foot</th>
<th>Diameter inches</th>
<th>Diameter mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3</td>
<td>.11</td>
<td>.376</td>
<td>.375</td>
<td>9.53</td>
</tr>
<tr>
<td>#4</td>
<td>.20</td>
<td>.668</td>
<td>.500</td>
<td>12.7</td>
</tr>
<tr>
<td>#5</td>
<td>.31</td>
<td>1.043</td>
<td>.625</td>
<td>15.88</td>
</tr>
<tr>
<td>#6</td>
<td>.44</td>
<td>1.502</td>
<td>.750</td>
<td>19.05</td>
</tr>
<tr>
<td>#7</td>
<td>.60</td>
<td>2.044</td>
<td>.875</td>
<td>22.23</td>
</tr>
<tr>
<td>#8</td>
<td>.79</td>
<td>2.670</td>
<td>1.000</td>
<td>25.40</td>
</tr>
<tr>
<td>#9</td>
<td>1.00</td>
<td>3.400</td>
<td>1.128</td>
<td>28.58</td>
</tr>
<tr>
<td>#10</td>
<td>1.27</td>
<td>4.303</td>
<td>1.270</td>
<td>31.75</td>
</tr>
<tr>
<td>#11</td>
<td>1.56</td>
<td>5.313</td>
<td>1.410</td>
<td>34.93</td>
</tr>
<tr>
<td>#14</td>
<td>2.25</td>
<td>7.650</td>
<td>1.693</td>
<td>43.00</td>
</tr>
<tr>
<td>#18</td>
<td>4.00</td>
<td>13.600</td>
<td>2.257</td>
<td>57.33</td>
</tr>
</tbody>
</table>

Traditional Steel Reinforcement (Rebar)

- ASTM A615: deformed and plain carbon-steel bars (“non-weldable”)
- ASTM A706: deformed and plain low-alloy steel bars (weldable)
Welded Wire Reinforcement

- ASTM A1064 and ASTM A185: welded-wire reinforcement

Epoxy-Coated Reinforcement

- ASTM A775: epoxy-coated steel reinforcement
Zinc-Coated Reinforcement

- ASTM A767: zinc-coated (galvanized) steel bars

Other Types of Reinforcement

- Glass Fiber Reinforcement
- Basalt Reinforcement
Concrete Cover Over Reinforcement

- Concrete cover over reinforcement must always be ½” or greater

Chairs and Spacers
Fiber Reinforcement

- Macrofibers and microfibers
- Steel fibers and synthetic fibers

Steel Fiber Reinforcement
Synthetic Fiber Reinforcement

- Concrete placed in compression prior to supporting applied loads
 - Pre-tension
 - Post-tension

Prestressing

- Concrete placed in compression prior to supporting applied loads
 - Pre-tension
 - Post-tension
Prestressing
Prestressing
QA/QC and Concrete Testing

Quality Assurance & Quality Control

<table>
<thead>
<tr>
<th>QA</th>
<th>QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process-oriented</td>
<td>Product-oriented</td>
</tr>
<tr>
<td>Defect prevention</td>
<td>Defect identification</td>
</tr>
<tr>
<td>Proactive strategy</td>
<td>Reactive strategy</td>
</tr>
</tbody>
</table>
How QA/QC Ensures Consistently High Quality

1. Qualified and educated personnel
2. Completeness of work orders and product drawings
3. Quality of raw materials
4. Quality of forms
5. Fabrication and positioning of reinforcing steel
6. Positioning of embedding items
7. Concrete quality
8. Placement and consolidation of concrete
9. Curing of concrete
10. Product dimensions
11. Handling, storing and transporting product
12. Recordkeeping
13. Testing
14. Continuous improvement

Concrete Properties

- Unit weight
- Air content
- Slump
- Slump flow, spread, VSI
- Temperature
- Consistency
- Homogeneity
- Strength
- Volume stability
- Density
- Watertightness
- Thermal and acoustic insulation
- Durability (resistance to abrasion, freeze/thaw, impact, fire, harsh environments, etc.)
Fresh Concrete Testing

- Air content
- Slump
- Unit weight/density
- Temperature
- SCC only:
 - Slump flow or spread
 - Visual stability index
 - J-ring

Hardened Concrete Testing

- Compressive strength
- Three-edge bearing
- Watertightness
 - Vacuum testing
 - Hydrostatic testing
Other Tests

- Concrete durability tests:
 - Absorption
 - Absorption under pressure
 - Freeze-thaw durability
 - Electrical conductivity
 - Length change
 - Potential for alkali-silica reactivity
 - Scaling resistance
 - Abrasion resistance
 - Chloride ion ingress

Plant Safety, Technical, and Best Practices Resources at www.precast.org
Proactive Safety Measures

• Safety training throughout onboarding
• Fostering a safety culture
• Ongoing training:
 • Monthly safety meetings
 • Morning huddles, Weekly Toolbox Talks
 • Regular safety training for all employees
• Plant practices:
 • Proper personal protective equipment (PPE)
 • Regular equipment inspections, plus daily spot-checks
 • Use the right tool for the job, each time
 • Use equipment designed for ergonomics
 • Instill a sense of ownership

Most Common Injuries in Manufacturing

• Slips
• Trips
• Falls
• Caught in/between
NPCA Plant Safety Resources

- NPCA safety resources: www.precast.org/safety
 - 6-Module Safety Video (English and Spanish)
 - Occupational Health Program & Written Exposure Control Plan for Respirable Crystalline Silica
 - Bi-Monthly Toolbox Talks
 - Employee Safety Handbook

Summary

1. What is precast concrete?
2. Concrete raw materials
3. Types of concrete used in precast
4. Precast production process and plant equipment
5. Curing concrete
6. Concrete design, strength, and reinforcement
7. Prestressing
8. QA/QC and concrete testing
9. Plant safety
Precast 101

Kayla Hanson, P.E.
Concrete Sealants, Inc. | khanson@conseal.com | (800) 332-7325