

Learning Objectives

- Explain the difference between precast concrete and ready-mix/cast-in-place concrete.
- Describe benefits of precast concrete over other construction materials.
- Define common precast terms and their significance, including water-to-cement ratio, among others.
- List the raw materials and types of reinforcement used in concrete production.

Learning Objectives Continued

- Describe common types of concrete used in precast and their applications.
- Outline the processes and equipment involved in precast concrete manufacturing, including raw material selection, mixing, curing, handling, and beyond.
- Discuss the role of QA and QC in precast operations and list common fresh and hardened concrete tests and their purposes.

3

Overview

- 1. What is precast concrete?
- 2. Concrete raw materials
- 3. Types of concrete used in precast
- 4. Precast production process and plant equipment
- 5. Curing concrete
- 6. Concrete design, strength, and reinforcement
- 7. Prestressing
- 8. QA/QC and concrete testing
- 9. Plant safety

Egypt and Sudan

Italy

<section-header><section-header><section-header><text><image><image><image><image><image><image><image><image>

Precast Concrete Production Plant

Precast Concrete Jobsites

Precast Concrete Jobsites

Ready-Mix / Cast-in-Place Jobsite

Precast Concrete Industry

- 670+ NPCA precast producer members
 - Note: This does NOT account for every precast production plant! Not even close.
- Concrete is the second-most used material in the world
- ~30 billion tons of concrete are used each year

https://www.sciencedirect.com/science/article/abs/pii/S1350630714000387 https://heatmap.news/economy/the-planet-s-jaw-dropping-astonishing-downrightshocking-amount-ofconcrete#:~-text=The%20world%20produces%20somewhere%20around,produced%2 Oeach%20/year%20%5B4%5D.

What is precast concrete?

- Concrete cast elsewhere than its final location and cured in a controlled environment
- **Composite material** made of natural ingredients, manufactured materials, and industrial byproducts
- Displays highest strength in compression
- Service life can be 100+ years
- Infrastructure, residential, commercial, industrial, architectural applications, and **beyond**

Why precast concrete?

- Strength
- Durability
- Optimization
- Long service life
- Economy
- Ease of installation
- Modularity
- Accelerated schedules
- Safety

- Versatility, flexibility, and innovation
- Precise manufacturing
- Local availability
- Reliable supply chain
- Resilience
- Sustainability
- Resilience

Concrete Raw Materials

- Cement
- Water
- Supplementary cementitious materials (SCMs)
- Admixtures
- Coarse aggregate
- Fine aggregate

- Cement is a dry powder that chemically reacts with water, hardens, and adheres to other materials to bind them together
 - Also called portland cement or hydraulic cement
 - "Hydraulic" means it reacts readily with water

THAT MOMENT WHEN

20

Portland Cement Origins

- Joseph Aspdin
- 1778-1855
- 1824 patent: "an improvement in the mode of producing an artificial stone"

<section-header>Ortland Cement Primary IngredientsImage: State St

• The proportions of each of these materials in the cement determines how the cement will perform

Portland Cement Production

Clinker

Mixing Water

- Water must be potable/drinkable
- Well water or city water is acceptable
- Well water must conform to ASTM C1602

What about washout water?

PRECAST

2 Main Products of Cement Hydration

Calcium Silicate Hydrate (CSH)

- Primary cementitious binder.
- Greatest contributor to strength.
 - The main "glue" in concrete.

Calcium Hydroxide (CH)

- Little to no cementitious properties.
 - Contributes little to strength.
- Helps maintain high pH of concrete.

31

Water-to-Cement Ratio

- Water-to-cement ratio (w/c) = weight of water / weight of cement in a batch of concrete
- Water-to-cementitious materials ratio (w/c_m) = weight of water / weight of all cementitious materials in a batch of concrete
- Varies depending on the type of concrete and the application
- In the right quantities, water and cement will create a very strong, durable, and impermeable paste
- Water demand varies day-to-day

Water-to-Cement Ratios

w/c = 0.40 Concrete's water-to-cement 14000 w/c = 0.53ratio (w/c) has a significant Compressive strength, MPa 12000 impact on concrete's DSI strength and durability. 10000 Compressive strength, Generally: 8000 • A higher w/c -> lower 6000 strength and reduced durability 4000 A lower w/c -> higher Outdoor exposure - Skokie, Illinois strength and increased 150-mm (6-in.) modified cubes 2000 durability Type I cement 7d 3d 28d 3m 1y 3y 5y 10y 20y **Graph from Portland Cement Association's (PCA) Design and Control of Concrete Mixtures** Age at Test

What Happens When *More* Water is Added

- Water-to-cement ratio (w/c) = weight of water / weight of cement in a batch of concrete
 - 336 lbs water / 700 lbs cement = 0.48
- Add two extra gallons of water (8.43 lbs of water per gallon = 16.86 lbs water)
 - 353 lbs water / 700 lbs cement = 0.504

37

Supplementary Cementitious Materials (SCMs)

- Supplementary cementitious materials (SCMs) are used in conjunction with – and as a partial replacement for – portland cement
 - Pozzolanic vs. hydraulic
 - · Can be pre-blended with hydraulic cement
- Common types:
 - Fly ash
 - Slag cement
 - Silica fume
 - Metakaolin

Supplementary Cementitious Materials

Chemical Admixtures

- Most every concrete mix today uses some type of admixture
- · Liquid or powder
- Dosed in ounces or pounds

- Common types/uses:
 - Air-entrainers
 - Water-reducers
 - Plasticizers
 - Accelerators
 - Retarders
 - · Permeability reducers
 - Corrosion inhibitors
 - Coloring
 - · Permeability-reducers
 - Antimicrobials

Chemical Admixtures

- Main reasons for using admixtures:
 - Achieve certain properties in concrete more effectively than by other means
 - Maintain the quality of concrete during the stages of mixing, transporting, placing, finishing, and curing (especially in adverse weather conditions or intricate placements)
 - Overcome certain emergencies during concreting operations
 - Economy

- An admixture's effectiveness depends upon:
 - Admixture composition, addition rate, time of addition
 - Type, brand, and amount of cementitious materials
 - Water content
 - Aggregate shape, gradation, and proportions
 - · Mixing time
 - Slump
 - Temperature of the concrete

41

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Light Weight Aggregate Concrete

Heavy Weight Aggregates

- Heavy weight aggregate densities are typically greater than 130 lbs/ft³
- Used for bollards and other security applications, counterweights, etc.

Maximum Aggregate Size

- Maximum aggregate size depends on the size and shape of the concrete element and the reinforcing steel:
 - 1/5 of the narrowest dimension of a vertical concrete member: D_{max} = 1/5*B
 - 3/4 of the clear spacing between reinforcing bars and 3/4 of the clear spacing between reinforcing bars and the forms/molds:

 $D_{max} = 3/4*S$ and $D_{max} = 3/4*C$

• 1/3 of the depth of slabs: D_{max} = 1/3*T

PRECAST

Types of Concrete Used in Precast

- 1. Wet-cast concrete (conventional concrete)
- 2. Dry-cast concrete (also called zero-slump or no-slump concrete)
- 3. Self-consolidating concrete (SCC)
- 4. High-performance concrete (HPC)
- 5. Ultra high-performance concrete (UHPC)

PRECAST

<section-header><section-header><section-header><image><image><page-footer>

High-Performance Concrete (HPC) and Ultra High-Performance Concrete (UHPC)

High-Performance Concrete (HPC) and Ultra High-Performance Concrete (UHPC)

Precast Production Process & Types of Plants

Aggregate Hoppers & Cementitious Material Silos

Aggregate and Cementitious Material Conveyance

Reinforcement Storage

<section-header><section-header>

69

Production Facility Interior

Chemical Admixture Equipment

Concrete Placing

• Depositing and distributing freshly mixed concrete in the location where it will cure and harden

- Deposit concrete as close to final location as possible
- · Minimize free-fall heights to less than 6 ft
- · Handle fresh concrete as little as possible

AR-RRD

Cold Weather Curing

- Use heated mix water (180° F or lower)
- · Cover curing products and apply a heater under the tarp
- Keep aggregates indoors
- Mix design adjustments

<section-header><section-header><list-item><list-item><list-item>

89

Accelerated Curing

Loads and Forces

- Structure's self-weight
- Thermal stresses
- Shrinkage
- Buoyant forces
- Hydrostatic loads
- Soil loads
- Wheel loads
- Wind, snow, rain, seismic
- Handling loads

U.S. Standard Reinforcing Steel Bars				
Bar Size Designation	Area Square Inches	Weight lb Per Foot	Diameter	
			inches	mm
#3	.11	.376	.375	9.53
#4	.20	.668	.500	12.7
#5	.31	1.043	.625	15.88
#6	.44	1.502	.750	19.05
#7	.60	2.044	.875	22.23
#8	.79	2.670	1.000	25.40
#9	1.00	3.400	1.128	28.58
#10	1.27	4.303	1.270	31.75
#11	1.56	5.313	1.410	34.93
#14	2.25	7.650	1.693	43.00
#18	4.00	13.600	2.257	57.33

Traditional Steel Reinforcement (Rebar)

- ASTM A615: deformed and plain carbon-steel bars ("non-weldable")
- ASTM A706: deformed and plain low-alloy steel bars (weldable)

Fiber Reinforcement

- Macrofibers and microfibers
- Steel fibers and synthetic fibers

105

Steel Fiber Reinforcement

Synthetic Fiber Reinforcement

107

Prestressing

Prestressing

111

113

How QA/QC Ensures Consistently High Quality

- 1. Qualified and educated personnel
- 2.Completeness of work orders and product drawings
- 3. Quality of raw materials
- 4. Quality of forms
- 5. Fabrication and positioning of reinforcing steel
- 6. Positioning of embedding items
- 7.Concrete quality

- 8.Placement and consolidation of concrete
- 9. Curing of concrete
- 10.Product dimensions
- 11.Handling, storing and transporting product
- 12.Recordkeeping
- 13.Testing
- 14.Continuous improvement

115

Concrete Properties

- Unit weight
- Air content
- Slump
- Slump flow, spread, VSI
- Temperature
- Consistency
- Homogeneity
- Strength
- Volume stability

- Density
- Watertightness
- Thermal and acoustic insulation
- Durability (resistance to abrasion, freeze/thaw, impact, fire, harsh environments, etc.)

Fresh Concrete Testing

- Air content
- Slump
- Unit weight/density
- Temperature
- SCC only:
 - · Slump flow or spread
 - · Visual stability index
 - J-ring

PRECAST

117

Hardened Concrete Testing

- Compressive strength
- Three-edge bearing
- Watertightness
 - Vacuum testing
 - Hydrostatic testing

Plant Safety, Technical, and Best Practices Resources at <u>www.precast.org</u>

- Slips
- Trips
- Falls
- Caught in/between

Summary

- 1. What is precast concrete?
- 2. Concrete raw materials
- 3. Types of concrete used in precast
- 4. Precast production process and plant equipment
- 5. Curing concrete
- 6. Concrete design, strength, and reinforcement
- 7. Prestressing
- 8. QA/QC and concrete testing
- 9. Plant safety

