Basics of Reinforced Concrete Design

Presented by: Ronald Thornton, P.E.

Reinforced Concrete Design

• Define several terms related to reinforced concrete design
• Learn the basic theory behind structural analysis and reinforced concrete design
• What is “Area-of-Steel”?
• Design codes
• Non-destructive testing of concrete
Reinforced Concrete Design

• Member
 – Wall, Slab, Beam, or Column

Reinforced Concrete Design

• Boundary Conditions
 – Simply supported
 – Fixed Ends
 – Cantilever
 – Propped Cantilever
 – Continuous Support
Reinforced Concrete Design

• Applied Loads
 – Dead Loads
 – Live Loads
 – Earth Loads
 – Seismic
 – Hydrostatic
 – Wind, Snow, ice,…..

Reinforced Concrete Design

• Loads

 Concentrated Load

 Uniform or Superimposed load
Reinforced Concrete Design

• Load Factor – A multiplier that magnifies the load for design purposes.
• Load Combinations – ACI 318, Article 9.2
 – $U = 1.4D$
 – $U = 1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
 – $U = 1.2D + 1.0E + 1.0L + 0.2S$

Reinforced Concrete Design

• Basic Requirement for Strength.
 – Design Strength \geq Required Strength
 – f_N (Nominal Strength) \geq U (Ultimate Strength)
 • Ultimate = Factored
 – Capacity \geq Demand
Reinforced Concrete Design

• Strength Reduction Factor, F – A multiplier that reduces the capacity of the member for design purposes.
• ACI 318, Article 9.3
 – Moment = 0.90
 – Shear = 0.75
 – Axial = 0.70

Reinforced Concrete Design

• Strength Reduction Factor, F – A multiplier that reduces the capacity of the member for design purposes.
• AASHTO Standard
 – Moment = 0.90
 – Shear = 0.85
 – Axial = 0.70
Reinforced Concrete Design

- **Force**
 - Shear – Is greatest near the support
 - Flexure – Bending Moment
 - Axial – Typically related to columns

\[
\text{Shear Diagram} \\
(+) \text{ Positive}
\]

Reinforced Concrete Design

- **Shear – Moment Diagram (Uniform Load)**

\[
\text{Moment Diagram} \\
\text{Simple Support}
\]
Reinforced Concrete Design

• Shear – Moment Diagram (Uniform Load)

Shear Diagram

(+) Positive

Moment Diagram
Fixed Support

(-) Negative

"STRESS"
Reinforced Concrete Design

• Basic Stress Formula

\[\sigma = \frac{P}{A} \pm \frac{M \times c}{I} \]

– \(P \) = Applied Load
– \(A \) = Area resisting the load
– \(M \) = Applied Moment
– \(c \) = Distance from Centroid to Extreme Fiber
– \(I \) = Moment-of-Inertia

Reinforced Concrete Design

• Concrete Properties

– \(f_c \) = Compressive Strength, psi
– \(v_c \) = Allowable Shear Stress, psi \(v_c = \beta \sqrt{f_c} \)
– \(f_r \) = Modulus-of-Rupture, psi \(f_r = 7.5 \sqrt{f_c} \)
– \(c \) = Distance from Centroid to Extreme Fiber
– \(I \) = Moment-of-Inertia: A member’s tendency to resist bending or rotation, \(in^4 \) \(I = b \times h^3 / 12 \)
Reinforced Concrete Design

- IF $fr < Mc/l$
 - Brittle Failure

Reinforced Concrete Design

- Reinforcing Steel Properties
 - Yield Strength, $F_y = 60,000$psi
 - Modulus-of-Elasticity, $E_c = 29,000,000$psi
 - “Ductility” – Ability to stretch without breaking
Reinforced Concrete Design

Equations

\[
\varepsilon = 0.003 \\
\varepsilon_s = \frac{F_y}{E_s} \\
F_y A_s \\
M = 0.85 f'_c (d - \frac{a}{2})
\]

Bar Size and Diameter Table

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Diameter (in)</th>
<th>A_b (in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.375</td>
<td>.11</td>
</tr>
<tr>
<td>4</td>
<td>.500</td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.625</td>
<td>.31</td>
</tr>
<tr>
<td>6</td>
<td>.750</td>
<td>.44</td>
</tr>
<tr>
<td>7</td>
<td>.875</td>
<td>.60</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
<td>.79</td>
</tr>
<tr>
<td>9</td>
<td>1.128</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>1.270</td>
<td>1.27</td>
</tr>
<tr>
<td>11</td>
<td>1.410</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Source: Concrete Reinforcing Steel Institute - CRSI
Reinforced Concrete Design

Beam

\[A_s = A_b \times \text{Number of Bars} \]

(3) # 6 Bars

\[A_s = 0.44 \times 3 = 1.32 \text{in}^2 \]

Reinforced Concrete Design

Slab

\[A_s = \frac{A_b \times 12}{\text{Spacing}} \]

#5 @ 9"oc

\[A_s = \frac{0.41 \text{in}^2 \times 12"}{9"} = 0.41 \text{in}^2/ft \]
Reinforced Concrete Design

• Welded Wire Reinforcing
 – 4 x 8 W6/W3
 • Longitudinal Wire Spacing (4”) x
 • Transverse Wire Spacing (8”)
 • W = Smooth Wire (D = Deformed Wire)
 • Longitudinal Wire Size ($A_w = .06in^2$)
 • Transverse Wire Size ($A_w = .03in^2$)

Source: Wire Reinforcing Institute - WRI

Reinforced Concrete Design

• Welded Wire Reinforcing
 – $A_s = \frac{A_w \times 12}{Spacing}$
 – $A_s = \frac{0.06in^2 \times 12"}{6"} = 0.18in^2/ft$ Longitudinal
 – $A_s = \frac{0.03in^2 \times 12"}{R"} = 0.045in^2/ft$ Transverse
Reinforced Concrete Design

• A_s Required – 0.40in2/ft
 – #4 @ 6"oc = 0.40in2/ft
 – #5 @ 9"oc = 0.41in2/ft
 – #6 @ 13"oc = 0.41in2/ft
 – D10 @ 3"oc = 0.40in2/ft (Grade 70 Wire)

Reinforced Concrete Design

• “Serviceability”
 – Satisfactory Performance under normal service conditions
 – Code Related
 – Ensures durability and service life
 – Use unfactored loads
Reinforced Concrete Design

- “Serviceability”
 - Crack Control
 - Limitation of Service Load Stress
 - Deflection
 - Fatigue
 - Minimum Reinforcing Limits
 - Bar Development
 - Splices

Reinforced Concrete Design

- “Serviceability”
 - Code Related
 - ACI 318 – Structural Concrete Building Code
 - ACI 350 – Environmental Engineering Structures
 - AASHTO Standard Specification
 - AASHTO LRFD Specification
 - AREMA – American Railway Engineering Manual
 - CSA Canadian Standards Association
Reinforced Concrete Design

• “Serviceability”
 – Crack Control
 • Steel Stress
 • Bar Cover
 • Bar Spacing

\[z = f_s \sqrt[3]{d_c A} \]
\[A = 2d_c \times \text{Spacing} \]
\[f_s = 0.6F_y \]

Reinforced Concrete Design

• \(A_s\) Required – 0.40in\(^2\)/ft; \(Z_{\text{max}}\) = 130kips/in
 – #4 @ 6”oc = 0.40in\(^2\)/ft
 • \(Z = 120\)kips/in \ OK
 – #5 @ 9”oc = 0.41in\(^2\)/ft
 • \(Z = 140\)kips/in \ NG
 – #6 @ 13”oc = 0.41in\(^2\)/ft
 • \(Z = 162\)kips/in \ NG
 – D10 @ 3”oc = 0.40in\(^2\)/ft (Grade 70 Wire)
 • \(Z = 92\)kips/in \ OK
Reinforced Concrete Design

- A_s Required – 0.40in2/ft; $Z_{\text{max}} = 130$ kips/in
 - Yield Adjustment \[A_{s, \text{adj}} = A_{s, \text{req'd}} \times \frac{F_y \text{ bar}}{F_y \text{ wire}} \]
 \[A_{s, \text{adj}} = 0.40 \text{ in}^2/\text{ft} \times \frac{60}{70} = 0.34\text{in}^2/\text{ft} \]
 - Try D17 Wire @ 6”oc, $A_s = 0.34\text{in}^2/\text{ft}$
 - $Z = 138$ kips/in NG
 - Try D8.5 Wire @ 3”oc, $A_s = 0.34\text{in}^2/\text{ft}$
 - $Z = 107$ kips/in OK

Reinforced Concrete Design

- “Minimum Flexural Reinforcing”
 - Established by Code
 - ACI 318 \[A_{s, \text{min}} = \frac{3 \sqrt{f'_c}}{f_y} b_w d \]
 - But not less than \[200b_w d / f_y \]
 - AASHTO Standard \[\phi M_n \geq 1.2M_{cr} \]
 - Same as LRFD
 - Minimum waived if \[A_{s, \text{prov}} \geq 4/3A_{s, \text{req'd}} \]
 - Ex: 0.40in2/ft \times 1.333 = 0.53in2/ft
Reinforced Concrete Design

• “Minimum Temperature Reinforcing”
 – Established by Code
 • ACI 318
 – Slabs $As_{min} = 0.0018Ag$ Where, $Ag = b \times h$
 – Walls Horiz = 0.0020Ag
 – Walls Vertical = 0.0012Ag
 – Chapter 16, Precast Walls = 0.0010Ag
 • AASHTO Standard = .125in$²$/ft

Non-Destructive Testing

• Two types of rebar locaters
 – Cover Meter (R-Meter)
 • Emits an electromagnetic pulse to detect the magnetic field induced by rebar.
 – Ground Penetrating Radar (GPR)
 • Transmits polarized pulses of electromagnetic energy into the surface then records the energy that is reflected back to the surface.
Non-Destructive Testing

- Cover Meter (R-Meter)
 - Can be used in wet or dry conditions
 - Can detect the presence and approximate bar cover
 - Not very accurate at determining bar diameter
 - ± 1 bar size at best
 - Results can be affected by the presence of other metals, i.e. form ties
Non-Destructive Testing

- Ground Penetrating Radar (GPR)
 - Sensitive to moisture conditions
 - Cannot be used on wet surfaces
 - Requires well trained users
 - Reasonably accurate if properly calibrated
 - Bar cover reportedly within 3mm (FHWA)
Non-Destructive Testing

- Primary purpose is to locate rebar prior to coring or drilling
- Not intended for QC purposes

??QUESTIONS??
Basics of Reinforced Concrete Design
Presented by: Ronald Thornton, P.E.